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Background

• Program must be brought into memory for it to be run 
• Main memory and registers are only storage CPU can directly access 

• register access in one CPU clock (or less) 
• main memory can take hundreds of cycles 
• cache sits between main memory and CPU registers 

• Protection of memory is required to ensure correct operation 
• Isolation: kernel/user space, between processes… 
• Protection: read/write/execute



Address Binding

• Inconvenient to have first process address always at 0 (why?) 
• (shared) libraries, nil pointer dereference detection… 

• Addresses are represented in different ways at different stages of a 
program’s life 
• source code addresses are usually symbolic (e.g., temp) 
• compiler binds symbols to relocatable addresses 

• e.g., “14 bytes from beginning of this module” 
• linker (or loader) binds relocatable addresses to absolute addresses 

• e.g., 0x0e74014



Address Binding

• Binding of instructions and data to memory can happen at three stages: 
• compile time:   

• if memory location is known, compiler can generate absolute code 
• usually used in the kernel and boot loader 
• must recompile code if starting location changes 

• load time:   
• the loader loads the program at some location, and fixes it 

• execution time:   

• binding is delayed until run time (demand paging) 
• code/data may be moved from one location to another (swapper)



Multi-step Processing of a User Program 



Memory Allocation

• How to satisfy a request of size n from a list of free memory blocks? 
• first-fit:  allocate from the first block that is big enough 
• best-fit:  allocate from the smallest block that is big enough  

• must search entire list, unless ordered by size   
• produces the smallest leftover hole 

• worst-fit:  allocate from the largest hole 
• must also search entire list   
• produces the largest leftover hole 

• Fragmentation is big problem for all three methods 
• first-fit and best-fit usually perform better than worst-fit



Fragmentation
• External fragmentation 

• unusable memory between allocated memory blocks

• total amount of free memory space is larger than a request 
• the request cannot be fulfilled because the free memory is not contiguous 

• external fragmentation can be reduced by compaction 
• shuffle memory contents to place all free memory in one large block 
• program needs to be relocatable at runtime 

• Internal fragmentation 
• memory allocated may be larger than the requested size

• this size difference is memory internal to a partition, but not being used 

• Sophisticated algorithms are designed to avoid fragmentation 
• none of the first-/best-/worst-fit can be considered sophisticated



Logical vs. Physical Address Space

• Logical/physical address separation is central to memory management 
• logical address – address generated by the software 

• also referred to as virtual address 
• logical address space is all logical addresses generated by a program 

• physical address – address seen by the memory unit 
• physical address space is all physical addresses generated by a program 

• OS determines logical to physical address mapping using MMU 
• a logical address can be mapped to different physical address for different 

processes or different time of a process (swapping) 
• a block of physical memory can be mapped into many logical addresses (shared 

memory)



Memory-Management Unit

• MMU is hardware that maps logical address to physical address at run time  
• the user program deals with logical (virtual) addresses 

• it never sees the real physical addresses 
• MMU converts virtual address to physical address 

• CPU accesses memory using physical address 
• Many different types of MMU 

• segmentation and paging are two typical types of MMU 
• e.g., MS-DOS on Intel 80x86 used 4 segments 

• memory allocated contiguously, segments used to protect OS



Paging

• Paging maps logical address space to physical spaces in pages 
• divide physical memory into fixed-sized blocks called frames 

• frame/page size is a power of 2, between 512 bytes to 16 Mbytes 
• kernel keeps track of all free frames 

• divide logical memory into blocks of the same size called pages 
• page table maps logical pages to physical frames 

• logical address space is contiguous (visible to program) 
• physical address space could be non-contiguous (visible to hardware) 
• each process has its own page table 

• Does paging have external/internal fragmentation problems?



Paging: Address Translation

• A logical address is divided into: 
• page number (p)  

• used as an index into a page table 
• page table entry contains the corresponding physical frame number 

• page offset (d)  
• offset within the page/frame 
• combined with frame number to get the physical address

page number! page offset!

p! d!

m - n bits! n bits!

m bit logical address space, n bit page size



Paging Hardware



Paging Example



Paging Example II

m = 4 and n = 2   32-byte memory and 4-byte pages



Free Frames

Before allocation! After allocation!



Paging: Internal Fragmentation

• Paging has no external fragmentation, but internal fragmentation 

• e.g., page size: 2,048, program size: 72,766 (35 pages + 1,086 bytes) 
• internal fragmentation: 2,048 - 1,086 = 962 

• worst case internal fragmentation: 1 frame – 1 byte 

• average internal fragmentation: 1 / 2 frame size 
• Small frame sizes more desirable than large frame size? 

• memory becomes larger, and page table takes memory 
• page sizes actually grow over time 

• 4KB ➔ 2MB ➔ 4MB ➔ 1GB ➔ 2GB 
• why we need 2GB frames?



One-level Page Table
• One big page table maps logical address to physical address 

• the page table should be kept in main memory 
• page-table base register (PTBR) points to the page table 

• does PTBR contain physical or logical address? 
• page-table length register (PTLR) indicates the size of the page table 

• Every data/instruction access requires two memory accesses 
• one for the page table and one for the data / instruction 
• CPU can cache the translation to avoid one memory access (TLB)



TLB
• TLB (translation look-aside buffer) caches the address translation 

• if page number is in the TLB, no need to access the page table 
• if page number is not in the TLB, need to replace one TLB entry 
• TLB usually use a fast-lookup hardware cache called associative memory 
• TLB is usually small, 64 to 1024 entries 

• TLB and context switch 
• each process has its own page table 

• switching process needs to switch page table 
• TLB must be consistent with page table 

• flush TLB at every context switch, or,  
• tag TLB entries with address-space identifier (ASID) that uniquely identifies a process 

• some TLB entries can be shared by processes, and fixed in the TLB 
• e.g., TLB entries for the kernel



Associative Memory

• Associative memory: memory that supports parallel search 
• Associative memory is not addressed by “addresses”, but contents  

• if p is in associative memory’s key, return frame# (value) directly 
• think of hash tables

    1                         7 
    2                        12 
    3                        15 
    4                        31 

Page #! Frame #!



Paging Hardware With TLB



Effective Access Time

• Assume TLB lookup takes ε time unit with a hit ratio of α 
• ε can be < 10% of memory access time 
• hit ratio – percentage of page translation that is found in the TLB 

• Effective access time (EAT): (m + ε) α + (2m + ε)(1 – α) 
• m is main memory access time 
• assume TLB and page table access is not parallel 
• e.g., α = 80%, ε = 20ns, m = 100ns: EAT = 0.80 x 120 + 0.20 x 220 = 140ns 
• e.g., α = 98%, ε = 20ns, m = 140ns: EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns



Memory Protection

• Each page table entry has a present (aka. valid) bit  
• present: the page has a valid physical frame, thus can be accessed 

• Each page table entry contains some protection bits 
• kernel/user, read/write, execution?, kernel-execution? 
• why do we need them? 

• Any violations of memory protection result in a trap to the kernel



Memory Protection



• Paging allows to share memory between processes 
• e.g., one copy of code shared by all processes of the same program 

• text editors, compilers, browser.. 
• shared memory can be used for inter-process communication 
• shared libraries 

• Each process can, of course, have its private code and data 

Page Sharing



Page Sharing



Page Table

• One-level page table can consume lots of memory for page table 
• e.g., 32-bit logical address space and 4KB page size 

• page table would have 1 million entries (232 / 212) 
• if each entry is 4 bytes ➔ 4 MB of memory for page table alone 

• each process requires its own page table 
• page table must be physically contiguous 

• To reduce memory consumption of page tables: 
• hierarchical page table 

• hashed page table 

• inverted page table



Hierarchical Page Tables

• Break up the logical address space into multiple-level of page tables 
• e.g., two-level page table 
• first-level page table contains the frame# for second-level page tables 

• “page” the page table 
• Why hierarchical page table can save memory for page table?



Two-Level Page Table



Two-Level Paging

• A logical address is divided into: 
• a page directory number (first level page table) 
• a page table number (2nd level page table) 
• a page offset 

• Example: 2-level paging in 32-bit Intel CPUs 
• 32-bit address space, 4KB page size 
• 10-bit page directory number, 10-bit page table number 
• each page table entry is 4 bytes, one frame contains 1024 entries (2

10
)

p1! p2! d!
10! 10! 12!



Address-Translation Scheme



64-bit Logical Address Space

• 64-bit logical address space requires more levels of paging 
• two-level paging is not sufficient for 64-bit logical address space 

• if page size is 4 KB (2
12

), outer page table has 2
42

 entries, inner page tables 
have 2

10
 4-byte entries 

• one solution is to add more levels of page tables 
• e.g., three levels of paging: 1st level page table is 2

34
 bytes in size 

• and possibly 4 memory accesses to get to one physical memory location 
• usually not support full 64-bit virtual address space 

• AMD-64 supports 48-bit 
• canonical form: 48 through 63 of valid virtual address must be copies of bit 47



64-bit Logical Address Space



Hashed Page Tables

• In hashed page table, virtual page# is hashed into a frame# 
• the page table contains a chain of elements hashing to the same location 
• each element contains: page#, frame#, and a pointer to the next element 

• virtual page numbers are compared in this chain searching for a match 
• if a match is found, the corresponding frame# is returned 

• Hashed page table is common in address spaces > 32 bits



Hashed Page Table



Inverted Page Table

• Inverted page table tracks allocation of physical frame to a process 
• one entry for each physical frame ➔ fixed amount of memory for page table 
• each entry has the process id and the page# (virtual address) 

• Sounds like a brilliant idea? 
• to translate a virtual address, it is necessary to search the (whole) page table 

• can use TLB to accelerate access, TLB miss could be very expensive 
• how to implement shared memory? 

• a physical frame can only be mapped into one process!



Inverted Page Table



Segmentation

• Segmentation supports user view of a program 
• a program is a collection of segments 

• main program 
• function 
• local variables, global variables 
• stack 

• each segment can be mapped to physical blocks



User’s View of a Program



Segmentation

1!

3!

2!

4!

1!

4!

2!

3!

user space physical memory space



Segmentation

• In segmentation: a logical address consists of a tuple <segment#, offset>, 
• Segment table maps segments to physical memory 

• each segment table entry has: 
• base:  the starting physical address where the segments reside in memory 
• limit: the maximum offset of the segment 
• memory protection bites: present/read/write/execution 

• segment-table base register (STBR) points to the segment table 
• segment-table length register (STLR) indicates number of segments



Segmentation Hardware



Example of Segmentation



Swapping

• Swapping extends physical memory with backing disks   
• a process can be swapped temporarily out of memory to a backing store 

• backing store is usually a (fast) disk 
• the process will be brought back into memory for continued execution 

• does the process need to be swapped back in to same physical address? 
• Swapping is usually only initiated under memory pressure 
• Context switch time can become very high due to swapping 

• if the next process to be run is not in memory, need to swap it in 
• disk I/O has high latency



Swapping



Example: Intel Pentium

• Pentium supports both segmentation and segmentation with paging 

• each segment can be 4 GB 
• two segment tables, each can contain 8K entries 

• local descriptor table (LDT): per process 
• global descriptor table (GDT): shared 

• Three address types: 
• CPU generates logical address: segment selector + offset 

• segment selector: index into LDT/GDT 
• segmentation unit converts logical address to linear address 

• paging unit converts linear address to physical address 
• pages sizes can be 4 KB, 2MB, 4 MB



Intel Pentium



Intel Pentium



Intel Pentium: Paging



Linux Support for Intel Pentium

• Linux uses only 6 segments 
• kernel code, kernel data, user code, user data 
• task-state segment (TSS), default LDT segment 

• Linux only uses two of four possible modes 
• kernel: ring 0, user space: ring 3 

• Uses a generic four-level paging for 32-bit and 64-bit systems 
• for two-level paging, middle and upper directories are omitted 
• older kernels have three-level generic paging



Three-level Paging in Linux



End of Chapter 8


