
COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 8
Main Memory

Zhi Wang

Florida State University

Contents

• Background
• Address Binding
• Memory Allocation
• Paging
• Segmentation
• OS examples

Background

• Program must be brought into memory for it to be run
• Main memory and registers are only storage CPU can directly access

• register access in one CPU clock (or less)
• main memory can take hundreds of cycles
• cache sits between main memory and CPU registers

• Protection of memory is required to ensure correct operation
• Isolation: kernel/user space, between processes…
• Protection: read/write/execute

Address Binding

• Inconvenient to have first process address always at 0 (why?)
• (shared) libraries, nil pointer dereference detection…

• Addresses are represented in different ways at different stages of a
program’s life
• source code addresses are usually symbolic (e.g., temp)
• compiler binds symbols to relocatable addresses

• e.g., “14 bytes from beginning of this module”
• linker (or loader) binds relocatable addresses to absolute addresses

• e.g., 0x0e74014

Address Binding

• Binding of instructions and data to memory can happen at three stages:
• compile time:

• if memory location is known, compiler can generate absolute code
• usually used in the kernel and boot loader
• must recompile code if starting location changes

• load time:
• the loader loads the program at some location, and fixes it

• execution time:

• binding is delayed until run time (demand paging)
• code/data may be moved from one location to another (swapper)

Multi-step Processing of a User Program

Memory Allocation

• How to satisfy a request of size n from a list of free memory blocks?
• first-fit: allocate from the first block that is big enough
• best-fit: allocate from the smallest block that is big enough

• must search entire list, unless ordered by size
• produces the smallest leftover hole

• worst-fit: allocate from the largest hole
• must also search entire list
• produces the largest leftover hole

• Fragmentation is big problem for all three methods
• first-fit and best-fit usually perform better than worst-fit

Fragmentation
• External fragmentation

• unusable memory between allocated memory blocks

• total amount of free memory space is larger than a request
• the request cannot be fulfilled because the free memory is not contiguous

• external fragmentation can be reduced by compaction
• shuffle memory contents to place all free memory in one large block
• program needs to be relocatable at runtime

• Internal fragmentation
• memory allocated may be larger than the requested size

• this size difference is memory internal to a partition, but not being used

• Sophisticated algorithms are designed to avoid fragmentation
• none of the first-/best-/worst-fit can be considered sophisticated

Logical vs. Physical Address Space

• Logical/physical address separation is central to memory management
• logical address – address generated by the software

• also referred to as virtual address
• logical address space is all logical addresses generated by a program

• physical address – address seen by the memory unit
• physical address space is all physical addresses generated by a program

• OS determines logical to physical address mapping using MMU
• a logical address can be mapped to different physical address for different

processes or different time of a process (swapping)
• a block of physical memory can be mapped into many logical addresses (shared

memory)

Memory-Management Unit

• MMU is hardware that maps logical address to physical address at run time
• the user program deals with logical (virtual) addresses

• it never sees the real physical addresses
• MMU converts virtual address to physical address

• CPU accesses memory using physical address
• Many different types of MMU

• segmentation and paging are two typical types of MMU
• e.g., MS-DOS on Intel 80x86 used 4 segments

• memory allocated contiguously, segments used to protect OS

Paging

• Paging maps logical address space to physical spaces in pages
• divide physical memory into fixed-sized blocks called frames

• frame/page size is a power of 2, between 512 bytes to 16 Mbytes
• kernel keeps track of all free frames

• divide logical memory into blocks of the same size called pages
• page table maps logical pages to physical frames

• logical address space is contiguous (visible to program)
• physical address space could be non-contiguous (visible to hardware)
• each process has its own page table

• Does paging have external/internal fragmentation problems?

Paging: Address Translation

• A logical address is divided into:
• page number (p)

• used as an index into a page table
• page table entry contains the corresponding physical frame number

• page offset (d)
• offset within the page/frame
• combined with frame number to get the physical address

page number! page offset!

p! d!

m - n bits! n bits!

m bit logical address space, n bit page size

Paging Hardware

Paging Example

Paging Example II

m = 4 and n = 2 32-byte memory and 4-byte pages

Free Frames

Before allocation! After allocation!

Paging: Internal Fragmentation

• Paging has no external fragmentation, but internal fragmentation

• e.g., page size: 2,048, program size: 72,766 (35 pages + 1,086 bytes)
• internal fragmentation: 2,048 - 1,086 = 962

• worst case internal fragmentation: 1 frame – 1 byte

• average internal fragmentation: 1 / 2 frame size
• Small frame sizes more desirable than large frame size?

• memory becomes larger, and page table takes memory
• page sizes actually grow over time

• 4KB ➔ 2MB ➔ 4MB ➔ 1GB ➔ 2GB
• why we need 2GB frames?

One-level Page Table
• One big page table maps logical address to physical address

• the page table should be kept in main memory
• page-table base register (PTBR) points to the page table

• does PTBR contain physical or logical address?
• page-table length register (PTLR) indicates the size of the page table

• Every data/instruction access requires two memory accesses
• one for the page table and one for the data / instruction
• CPU can cache the translation to avoid one memory access (TLB)

TLB
• TLB (translation look-aside buffer) caches the address translation

• if page number is in the TLB, no need to access the page table
• if page number is not in the TLB, need to replace one TLB entry
• TLB usually use a fast-lookup hardware cache called associative memory
• TLB is usually small, 64 to 1024 entries

• TLB and context switch
• each process has its own page table

• switching process needs to switch page table
• TLB must be consistent with page table

• flush TLB at every context switch, or,
• tag TLB entries with address-space identifier (ASID) that uniquely identifies a process

• some TLB entries can be shared by processes, and fixed in the TLB
• e.g., TLB entries for the kernel

Associative Memory

• Associative memory: memory that supports parallel search
• Associative memory is not addressed by “addresses”, but contents

• if p is in associative memory’s key, return frame# (value) directly
• think of hash tables

 1 7
 2 12
 3 15
 4 31

Page #! Frame #!

Paging Hardware With TLB

Effective Access Time

• Assume TLB lookup takes ε time unit with a hit ratio of α
• ε can be < 10% of memory access time
• hit ratio – percentage of page translation that is found in the TLB

• Effective access time (EAT): (m + ε) α + (2m + ε)(1 – α)
• m is main memory access time
• assume TLB and page table access is not parallel
• e.g., α = 80%, ε = 20ns, m = 100ns: EAT = 0.80 x 120 + 0.20 x 220 = 140ns
• e.g., α = 98%, ε = 20ns, m = 140ns: EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns

Memory Protection

• Each page table entry has a present (aka. valid) bit
• present: the page has a valid physical frame, thus can be accessed

• Each page table entry contains some protection bits
• kernel/user, read/write, execution?, kernel-execution?
• why do we need them?

• Any violations of memory protection result in a trap to the kernel

Memory Protection

• Paging allows to share memory between processes
• e.g., one copy of code shared by all processes of the same program

• text editors, compilers, browser..
• shared memory can be used for inter-process communication
• shared libraries

• Each process can, of course, have its private code and data

Page Sharing

Page Sharing

Page Table

• One-level page table can consume lots of memory for page table
• e.g., 32-bit logical address space and 4KB page size

• page table would have 1 million entries (232 / 212)
• if each entry is 4 bytes ➔ 4 MB of memory for page table alone

• each process requires its own page table
• page table must be physically contiguous

• To reduce memory consumption of page tables:
• hierarchical page table

• hashed page table

• inverted page table

Hierarchical Page Tables

• Break up the logical address space into multiple-level of page tables
• e.g., two-level page table
• first-level page table contains the frame# for second-level page tables

• “page” the page table
• Why hierarchical page table can save memory for page table?

Two-Level Page Table

Two-Level Paging

• A logical address is divided into:
• a page directory number (first level page table)
• a page table number (2nd level page table)
• a page offset

• Example: 2-level paging in 32-bit Intel CPUs
• 32-bit address space, 4KB page size
• 10-bit page directory number, 10-bit page table number
• each page table entry is 4 bytes, one frame contains 1024 entries (2

10
)

p1! p2! d!
10! 10! 12!

Address-Translation Scheme

64-bit Logical Address Space

• 64-bit logical address space requires more levels of paging
• two-level paging is not sufficient for 64-bit logical address space

• if page size is 4 KB (2
12

), outer page table has 2
42

 entries, inner page tables
have 2

10
 4-byte entries

• one solution is to add more levels of page tables
• e.g., three levels of paging: 1st level page table is 2

34
 bytes in size

• and possibly 4 memory accesses to get to one physical memory location
• usually not support full 64-bit virtual address space

• AMD-64 supports 48-bit
• canonical form: 48 through 63 of valid virtual address must be copies of bit 47

64-bit Logical Address Space

Hashed Page Tables

• In hashed page table, virtual page# is hashed into a frame#
• the page table contains a chain of elements hashing to the same location
• each element contains: page#, frame#, and a pointer to the next element

• virtual page numbers are compared in this chain searching for a match
• if a match is found, the corresponding frame# is returned

• Hashed page table is common in address spaces > 32 bits

Hashed Page Table

Inverted Page Table

• Inverted page table tracks allocation of physical frame to a process
• one entry for each physical frame ➔ fixed amount of memory for page table
• each entry has the process id and the page# (virtual address)

• Sounds like a brilliant idea?
• to translate a virtual address, it is necessary to search the (whole) page table

• can use TLB to accelerate access, TLB miss could be very expensive
• how to implement shared memory?

• a physical frame can only be mapped into one process!

Inverted Page Table

Segmentation

• Segmentation supports user view of a program
• a program is a collection of segments

• main program
• function
• local variables, global variables
• stack

• each segment can be mapped to physical blocks

User’s View of a Program

Segmentation

1!

3!

2!

4!

1!

4!

2!

3!

user space physical memory space

Segmentation

• In segmentation: a logical address consists of a tuple <segment#, offset>,
• Segment table maps segments to physical memory

• each segment table entry has:
• base: the starting physical address where the segments reside in memory
• limit: the maximum offset of the segment
• memory protection bites: present/read/write/execution

• segment-table base register (STBR) points to the segment table
• segment-table length register (STLR) indicates number of segments

Segmentation Hardware

Example of Segmentation

Swapping

• Swapping extends physical memory with backing disks
• a process can be swapped temporarily out of memory to a backing store

• backing store is usually a (fast) disk
• the process will be brought back into memory for continued execution

• does the process need to be swapped back in to same physical address?
• Swapping is usually only initiated under memory pressure
• Context switch time can become very high due to swapping

• if the next process to be run is not in memory, need to swap it in
• disk I/O has high latency

Swapping

Example: Intel Pentium

• Pentium supports both segmentation and segmentation with paging

• each segment can be 4 GB
• two segment tables, each can contain 8K entries

• local descriptor table (LDT): per process
• global descriptor table (GDT): shared

• Three address types:
• CPU generates logical address: segment selector + offset

• segment selector: index into LDT/GDT
• segmentation unit converts logical address to linear address

• paging unit converts linear address to physical address
• pages sizes can be 4 KB, 2MB, 4 MB

Intel Pentium

Intel Pentium

Intel Pentium: Paging

Linux Support for Intel Pentium

• Linux uses only 6 segments
• kernel code, kernel data, user code, user data
• task-state segment (TSS), default LDT segment

• Linux only uses two of four possible modes
• kernel: ring 0, user space: ring 3

• Uses a generic four-level paging for 32-bit and 64-bit systems
• for two-level paging, middle and upper directories are omitted
• older kernels have three-level generic paging

Three-level Paging in Linux

End of Chapter 8

