COP 4610: Introduction to Operating Systems (Spring 2016)

Chapter 8
Main Memory

Zhi Wang
Florida State University

Contents

+ Background

- Address Binding
- Memory Allocation
- Paging

+ Segmentation

- OS examples

Sackground

Program must be brought into memory for it to be run
Main memory and registers are only storage CPU can directly access
register access in one CPU clock (or less)
main memory can take hundreds of cycles
- cache sits between main memory and CPU registers
Protection of memory is required to ensure correct operation
Isolation: kernel/user space, between processes...

Protection: read/write/execute

Address Binding

- Inconvenient to have first process address always at O (why?)
- (shared) libraries, nil pointer dereference detection...

- Addresses are represented in different ways at different stages of a
program’s life

- source code addresses are usually symbolic (e.g., temp)
- compiler binds symbols to relocatable addresses
- e.g., “14 bytes from beginning of this module”
- linker (or loader) binds relocatable addresses to absolute addresses

- e.g., Ox0er4014

Address Binding

- Binding of instructions and data to memory can happen at three stages:
- compile time:
- If memory location is known, compiler can generate absolute code
- usually used in the kernel and boot loader
- must recompile code if starting location changes
- load time:
- the loader loads the program at some location, and fixes it
- execution time:
- binding is delayed until run time (demand paging)

- code/data may be moved from one location to another (swapper)

Multi-step

source
program

compiler or
assembler
object
module
other
object
modules
linkage
editor
load
module
system
library
loader
dynamicall
loaded
system 4
library in-memory
dynamic binary
linking memory

image

Processing of a User Program

compile
time

load
time

execution
> time (run
time)

Memory Allocation

How to satisfy a request of size n from a list of free memory blocks?
- first-fit: allocate from the first block that is big enough
best-fit: allocate from the smallest block that is big enough
must search entire list, unless ordered by size
produces the smallest leftover hole
- worst-fit: allocate from the largest hole
must also search entire list
produces the largest leftover hole
Fragmentation is big problem for all three methods

- first-fit and best-fit usually perform better than worst-fit

Fragmentation

External fragmentation
- unusable memory between allocated memory blocks
- total amount of free memory space is larger than a request
- the request cannot be fulfilled because the free memory is not contiguous
- external fragmentation can be reduced by compaction
- shuffle memory contents to place all free memory in one large block
- program needs to be relocatable at runtime
Internal fragmentation
- memory allocated may be larger than the requested size
- this size difference is memory internal to a partition, but not being used
- Sophisticated algorithms are designed to avoid fragmentation

* none of the first-/best-/worst-fit can be considered sophisticated

Logical vs. Physical Address Space

- Logical/physical address separation is central to memory management
- logical address — address generated by the software
- also referred to as virtual address
- logical address space is all logical addresses generated by a program
- physical address — address seen by the memory unit
+ physical address space is all physical addresses generated by a program
- OS determines logical to physical address mapping using MMU

- alogical address can be mapped to different physical address for different
processes or different time of a process (swapping)

- a block of physical memory can be mapped into many logical addresses (shared
memory)

Memory-Management Unit

- MMU is hardware that maps logical address to physical address at run time
- the user program deals with logical (virtual) addresses
- It never sees the real physical addresses
- MMU converts virtual address to physical address
- CPU accesses memory using physical address
- Many different types of MMU
- segmentation and paging are two typical types of MMU
- e.g., MS-DOS on Intel 80x86 used 4 segments

- memory allocated contiguously, segments used to protect OS

Paging

- Paging maps logical address space to physical spaces in pages

- divide physical memory into fixed-sized blocks called frames
- frame/page size is a power of 2, between 512 bytes to 16 Mbytes
- kernel keeps track of all free frames

- divide logical memory into blocks of the same size called pages

- page table maps logical pages to physical frames
- logical address space is contiguous (visible to program)
- physical address space could be non-contiguous (visible to hardware)
+ each process has its own page table

- Does paging have external/internal fragmentation problems?

Paging: Address Translation

- Alogical address is divided into:
- page number (p)
*+ used as an index into a page table
- page table entry contains the corresponding physical frame number
- page offset (d)
- offset within the page/frame

- combined with frame number to get the physical address

page number | page offset

p d

m - n bits n bits

m bit logical address space, n bit page size

Paging Hardware

7f
logical physical J
address address fO000 ... 0000
v

CPU — p | d
p{

page table

—_—

d >

1 e R

physical
memory

Paging Example

frame
number
page O 0
0] 1
page 1 11| 4 1| page O
2 [
age 2 2
pag 37
page 3 page table 3| page 2
Iogical 4 page 7
memory
5
6
7| page 3

physical
memory

Paging Example |l

0| a 0
1]1b
2 |BE
3|d
4 | e 4 i
5 | j
6|49 g k
7 | h 116 I
8 || 2|1 8 | m
9o i n
10| k S i 0
11| | page table p
12| m 12
13 |NE
14| o
15| p
logical memory 16
20 a
b
c
d
24 [N
f
g
h
28

physical memory

m=4and n=2 32-byte memory and 4-byte pages

Free Frames

free-frame list free-frame list
14 15
13 13 13 |page 1
18
20 14 14 page 0
15
- 7 - v
page O 16 page 0 16
page 1 page 1
page 2 17 page 2 17
page 3 page 3
new process new process
&' 18 L_/ 18 |page 2
19 o[12 19
113
20 2|18 20 |page 3
3120
21 new-process page table 21

(a) (b)

Before allocation After allocation

Paging: Internal Fragmentation

- Paging has no external fragmentation, but internal fragmentation
- e.g., page size: 2,048, program size: 72,766 (35 pages + 1,086 bytes)
- Internal fragmentation: 2,048 - 1,086 = 962
- worst case internal fragmentation: 1 frame - 1 byte
- average internal fragmentation: 1 / 2 frame size
- Small frame sizes more desirable than large frame size?
* memory becomes larger, and page table takes memory
* page sizes actually grow over time
- 4KB=> 2MB = 4MB > 1GB = 2GB

- why we need 2GB frames”?

One-level Page Table

* One big page table maps logical address to physical address
- the page table should be kept in main memory
page-table base register (PTBR) points to the page table
- does PTBR contain physical or logical address?
page-table length register (PTLR) indicates the size of the page table
Every data/instruction access requires two memory accesses
- one for the page table and one for the data / instruction

* CPU can cache the translation to avoid one memory access (TLB)

frame
number

page O 0

0|1
page 1 1
2
2
page 3

page 3 page table

page O

page 2

memory

1
2
3

logical 4| page 1
5
6
7

page 3

physical
memory

TLB

- TLB (translation look-aside buffer) caches the address translation
- if page number is in the TLB, no need to access the page table
- If page number is not in the TLB, need to replace one TLB entry
- TLB usually use a fast-lookup hardware cache called associative memory
- TLB is usually small, 64 to 1024 entries
- TLB and context switch
+ each process has its own page table
- switching process needs to switch page table
- TLB must be consistent with page table
- flush TLB at every context switch, or,
- tag TLB entries with address-space identifier (ASID) that uniquely identifies a process
- some TLB entries can be shared by processes, and fixed in the TLB

- e.g., LB entries for the kernel

Associative Memory

- Associative memory: memory that supports parallel search
- Associative memory is not addressed by “addresses”, but contents

- if p is in associative memory’s key, return frame# (value) directly

- think of hash tables

Page # Frame #
1 I

2 12

3 15
4 31

Paging Hardware With TLB

CPU

logical
address
— D d
page frame
number number
—
* .
—: TLB hit physical
> address
N A 4 \ 4
— 3 f d F—
A

TLB

p {
TLB miss

>

page table

physical
memory

—ffective Access Time

- Assume TLB lookup takes € time unit with a hit ratio of a

- £ can be < 10% of memory access time

- hit ratio — percentage of page translation that is found in the TLB

- Effective access time (EAT): (m +€) a + 2m + €)(1 — Q)

M IS main mMemory access time

- assume TLB and page table access is not parallel

- e.g.,,a=80%, € =20ns, m = 100ns: EAT = 0.80 x 120 + 0.20 x 220 = 140ns

- e.g.,,a=98%, € = 20ns, m = 140ns: EAT = 0.98 x 160 + 0.02 x 300 = 162.8ns

Memory Protection

- Each page table entry has a present (aka. valid) bit

- present: the page has a valid physical frame, thus can be accessed
- Each page table entry contains some protection bits

- kernel/user, read/write, execution?, kernel-execution?

- why do we need them?

- Any violations of memory protection result in a trap to the kernel

Memory Protection
page O
00000 frame number valid—invalid bit
page 0 \ ,/ page 1
0|2|vV
page 1 1 Faily page 2
page 2 i ; :
page 3 418 |V
5 [BOBIRY
page 4 6 IERE; page 3
10,468 | page 5 7 R page 4
12,287 page table
page 5

page n

Page Sharing

Paging allows to share memory between processes
e.g., one copy of code shared by all processes of the same program
text editors, compilers, browser..
shared memory can be used for inter-process communication
shared libraries

Each process can, of course, have its private code and data

Page Sharing

ed 1

ed?2

ed3

data 1

process P,

ed 1

ed?2

ed 3

data 3

process P,

2|l | |w

page table
for P,

N[O B Ww

page table
for P,

ed 1

ed 2

ed 3

data 2

process P,

~N| | AW

page table
for P,

10

11

data 1

data 3

ed 1

ed?2

ed 3

data 2

Page lable

- One-level page table can consume lots of memory for page table
- e.g., 32-bit logical address space and 4KB page size
- page table would have 1 million entries (232 / 212)
- If each entry is 4 bytes = 4 MB of memory for page table alone
»each process requires its own page table
- page table must be physically contiguous
- To reduce memory consumption of page tables:
- hierarchical page table
- hashed page table

- Inverted page table

Hierarchical Page Tables

- Break up the logical address space into multiple-level of page tables
- e.9., two-level page table
- first-level page table contains the frame# for second-level page tables

- "page” the page table

- Why hierarchical page table can save memory for page table”

Two-Level

Page lable

outer page
table

®00 |

| .

100
500 P
. 708
gfg N\ 900
900
page of 929
page table
page table

memory

Two-Level Paging

- Alogical address is divided into:
- a page directory number (first level page table)
-+ a page table number (2nd level page table)
- a page offset
- Example: 2-level paging in 32-bit Intel CPUs
- 32-bit address space, 4KB page size
- 10-bit page directory number, 10-bit page table number

»each page table entry is 4 bytes, one frame contains 1024 entries (210)

P+ P2 d
10 10 12

Address- Translation Scheme

logical address
Pi | P2 | d

.

o

outer page d
table {

page of
page table

64-bit Logical Address Space

- 064-bit logical address space requires more levels of paging
- two-level paging is not sufficient for 64-bit logical address space

12 42
- If page 1gize s 4 KB (2), outer page table has 2 entries, inner page tables

have 2 4-byte entries
* one solution is to add more levels of page tables
- e.g., three levels of paging: 1st level page table is 234 bytes in size
- and possibly 4 memory accesses to get to one physical memory location
- usually not support full 64-bit virtual address space
- AMD-64 supports 48-bit

- canonical form: 48 through 63 of valid virtual address must be copies of bit 47

64-bit Logical Address Space

outer page Inner page offset
P1 P2 d
42 10 12

2nd outer page = outer page | innerpage offset

P P> P3 d
32 10 10 12

Hashed Page Tables

In hashed page table, virtual page# is hashed into a frame#

- the page table contains a chain of elements hashing to the same location

- each element contains: page#, frame#, and a pointer to the next element
- virtual page numbers are compared in this chain searching for a match
- If a match is found, the corresponding frame# is returned

Hashed page table is common in address spaces > 32 bits

Hashed Page Table

logical address

P

——>Iq|S|’T|jIp|r|

v

physical
address

d

—

hash table

physical
memory

Inverted Page Table

- Inverted page table tracks allocation of physical frame to a process
*one entry for each physical frame = fixed amount of memory for page table
- each entry has the process id and the page# (virtual address)
+Sounds like a brilliant idea?
- to translate a virtual address, it is necessary to search the (whole) page table
- can use TLB to accelerate access, TLB miss could be very expensive
- how to implement shared memory”?

- a physical frame can only be mapped into one process!

Inverted

Page lable
logical
address l
CPU el || 0 || @ d

search l

physical
address

=
o
©

page table

'

physical
memory

Segmentation

Segmentation supports user view of a program
a program is a collection of segments
main program
- function
local variables, global variables
stack

each segment can be mapped to physical blocks

User’s View of a

2rogram

subroutine

Sqrt

symbol
table

main

program

logical address

Segmentation

user space physical memory space

Segmentation

In segmentation: a logical address consists of a tuple <segment#, offset>,
- Segment table maps segments to physical memory
+ each segment table entry has:
- base: the starting physical address where the segments reside in memory
limit: the maximum offset of the segment
memory protection bites: present/read/write/execution
- segment-table base register (STBR) points to the segment table

- segment-table length register (STLR) indicates number of segments

Segmentation Hardware

CPU

o

limit

base

A

segment
table

trap: addressing error

physical memory

—xample of Segmentation

subroutine stack
1400
segment 3 segment 0
2400
symbol
segment 0 table
limit | base
Sqrt segment 4 0| 1000 | 1400
1| 400 | 8300 3200
main 2| 400 | 4300
program 3| 1100 | 3200 segment 3
411000 | 4700

segment table 4300

segment 1 segment 2 segment 2
4700

logical address space segment 4
5700
6300

segment 1
6700

physical memory

Swapping

- Swapping extends physical memory with backing disks
+a process can be swapped temporarily out of memory to a backing store
- packing store is usually a (fast) disk
- the process will be brought back into memory for continued execution
- does the process need to be swapped back in to same physical address?
- Swapping is usually only initiated under memory pressure
- Context switch time can become very high due to swapping
- if the next process to be run is not in memory, need to swap it in

- disk I/0O has high latency

Swapping

operating | —
system
@ sl process P,
[—
process P,
@ swap in
eeee— |
I
user p/
SPACE backing store

main memory

—xample: Intel Pentium

- Pentium supports both segmentation and segmentation with paging
-+ each segment can be 4 GB
- two segment tables, each can contain 8K entries
- local descriptor table (LDT): per process
- global descriptor table (GDT): shared
- Three address types:
- CPU generates logical address: segment selector + offset
- segment selector: index into LDT/GDT
- segmentation unit converts logical address to linear address
- paging unit converts linear address to physical address

- pages sizes can be 4 KB, 2MB, 4 MB

Intel Pentium

logical linear physical
CPU address u Segmentation address . paging address q physica|
unit unit memory
page number page offset
P1 P2 d

10 10 12

Intel Pentium

logical address | selector offset

Y
descriptor table

—» segment descriptor —»{(+)«—

¥
32-bit linear address

Intel Pentium: Paging

(logical address)

page directory : page table 1 offset
31 22 21 l 12 11 1 0
—
page 4-KB
4 table > page
page B
directory
>
CR3 —» 5 4-MB
register page
T
page directory : offset

I
31 22 21 0

Linux Support for Intel Pentium

- Linux uses only 6 segments
- kernel code, kernel data, user code, user data
- task-state segment (TSS), default LDT segment
- Linux only uses two of four possible modes
- kernel: ring O, user space: ring 3
- Uses a generic four-level paging for 32-bit and 64-bit systems
- for two-level paging, middle and upper directories are omitted

- older kernels have three-level generic paging

Three-level Paging in Linux

(linear address)

. global directory | middle directory page table offset |
global
directory middle
directory bage
table
8 page
global i frame
i P
directory entry i page table |
middle i entry &
CR3 —» directory entry
register .
.
)

—nd of Chapter 8

